
693

Evaluating the use of Artificial Neural Networks for Platform-independent Performance

Prediction of Distributed Applications

Flores-Contreras, Jesus1; Duran-Limon, Hector2 & Mezura-Montes, Efren3

1 Universidad Autónoma de Nuevo León, Facultad de Contaduría Pública y Administración,

Monterrey, Nuevo León, México, jesus.floresct@uanl.edu.mx, Av. Universidad S/N Col. Ciudad Universitaria

2 Universidad de Guadalajara, Departamento de Sistemas de Información,

Guadalajara, Jalisco, México, hduran@cucea.udg.mx, Periferico Norte No. 799, Col. Los Belenes

3 Universidad Veracruzana, Departamento de Inteligencia Artificial,

Xalapa, Veracruz, México, emezura@uv.mx, Sebastian Camacho No. 5. Zona Centro

__
Información del artículo arbitrado e indexado en Latindex:
Fecha de envío: Abril de 2017
Revisado por pares
Fecha de publicación en línea:Julio de 2018

Abstract

A distributed system is a set of independent computer systems interconnected by a network, which work in a cooperative way and behave as a

single system creating an underlying platform for different kinds of applications. These platforms are usually used to execute long-running

applications that demand a lot of computational resources e.g. CPU processing power, memory, and network bandwidth. In such kind of systems it
is important to manage the available resources in an efficient way in order to improve the system’s overall performance. Knowing how an

application’s runtime is going to behave can greatly improve performance of a system, since this information allows the efficient distribution of

available resources. In this work, we present an evaluation of the suitability of artificial neural networks to achieve a platform-independent
approach to execution time prediction of distributed applications running on multi-core systems. We performed our evaluation with three parallel

long-running applications, namely the Weather Research and Forecasting (WRF) model, Octopus, and miniFE. Our results indicate that neural

networks are capable of producing accurate results when predicting the application runtime on the same platform, but its accuracy decreases when

the platform is changed.

Keywords

Distributed systems, Platform-independent, Prediction of runtime, Machine Learning technique, Long-running applications

1. Introduction

Distributed systems like Cluster and Grids are a set of autonomous computers interconnected by a network connection, which work in a

cooperative way and behave as a single system creating an underlying platform for different kinds of applications. Applications running on these

platforms commonly exhibit a non-linear performance behaviour [Shimizu et al., 2009].

694

An efficient management of the resources in the distributed system can improve the system performance. One way to improve such

resource management is applying performance prediction models [Tsafrir et al., 2007]. For example in [Qian et al., 2008] a prediction model was

used in a scheduling algorithm to improve the system performance. Performance prediction is usually used to improve workload management, and
scheduling on distributed systems [Oliner et al., 2011]. However, a disadvantage of these models is that they are usually platform-dependent;

hence it becomes necessary to redesign these models in order to apply them on different platforms. In contrast, platform-independent models

[Shimizu et al., 2009] can be used on unseen hardware configurations (each configuration involving a different amount of CPU speed, number of
processors, number of cores, RAM, etc.) where the same architecture instruction set (e.g. Intel) is assumed. A platform-independent model is

produced as a result of applying the approach to different hardware configurations, which typically involves running a number of benchmarks on

such hardware configurations. The produced model can then be used to predict the performance of an application on unseen hardware
configurations where no benchmarks have been run. As an example, these approaches can be used for capacity planning where it is necessary to

know whether the characteristics of a certain cluster system to be bought are enough to obtain the desired performance of specific applications.

Different methods can be used to predict the performance of an application. For example, linear regression [Sharkawi et al., 2012],
non-linear regression [Carrington et al., 2006], autoregressive moving average [Dong et al., 2012], support vector machines [Hu et al., 2012],

classification and regression trees [Li et al., 2009], and artificial neural networks [Oyamada et al., 2008]. The complexity of applying such

methods depends on the system behaviour. For instance, the use of statistical mathematical methods in multi-core systems, which present a non-
linear behaviour, can derive in computational complex models.

Other kinds of methods used for performance prediction are based on machine learning techniques. Although, there are several

machine learning techniques, it is known that artificial neural networks can achieve or improve the prediction accuracy of mathematical methods

[kundu et al., 2010][Sarangi and Bhattacharya, 2005][Upadhyaya et al., 2013] in different areas of study. In this paper, we establish the following
statement; neural networks are suitable to define a platform-independent prediction method for long-running applications on unseen platform

configurations. Hence, we focus on the execution time prediction of applications running in a free-workload environment. Our evaluation is

performed by using three long-running applications, where each application demands different resources from the underlying platform.

This paper is structured as follows. Section II details the related work of our research. Section III describes the neural network design
process, and defines the variables of the artificial neural network. Section IV presents the evaluation method. Section V discusses the results

obtained from the evaluated structure. Finally, some concluding remarks are given in Section VI.

2. Related work

Several approaches to estimate the execution time of an application have been proposed. Each proposal makes use of different methods, such as,
linear regression and machine learning techniques. For example in [Yang et al., 2005] the authors propose an architecture independent prediction

approach. In order to estimate the application’s runtime in different architectures, their method needs to perform a full execution on the reference

system and a partial execution in the target architecture. Some disadvantages of this approach are: a) the necessity of performing a partial
execution in the target system and b) the necessity of knowing the control flow of the application. In [Shimizu et al., 2009] the authors developed

a performance prediction method that is agnostic and platform-independent, which considers the application’s resource usage. This method

measures the usage of several resources such as cache memory, and network bandwidth communication. The values measured are later on used as

input parameters for a linear regression-based prediction model. However, the approach is only intended for single-core processors. Therefore, this

method is not suitable for multi-core systems where the performance behaviour of an application is non-linear. In [Gianni et al., 2010] the authors

proposed a method to predict the running time of a simulation system in a distributed environment. Their proposal is an iterative process that
needs to perform a characterisation of the application. A disadvantage of this proposal is that the prediction method has to be implemented in the

design phase of the application. In [Sanjay and Vadhiyar, 2008] the authors developed a modelling strategy to predict the runtime of parallel

applications in dedicated and non-dedicated clusters. The model takes into consideration several resources in which resources are represented in
an algebraic expression. This model offers several functions and the user must select one that fits better to the application behaviour. A

disadvantage of this approach is that the user must perform the function selection to get better accuracy.

As we can see, there are several proposals to predict the execution time of an application. However, such attempts present some

disadvantages such as them being applied during the design phase, or the burden imposed to characterise the application, and the inability to
perform platform-independent predictions on multi-core systems.

Regarding the use of neural networks, in [Oyamada et al., 2008] the authors are able to predict the application performance of an

application in an embedded system using an artificial neural Network. The authors claim to use neural networks because embedded systems

normally have a non-linear behaviour. In [Dodonov and de Mello, 2010] the authors present a prediction method based on neural networks and
chaos theory. Their method involves an off-line and on-line monitoring evaluation of the application. The off-line evaluation analyses the process

execution traces, and the on-line evaluation relies on monitoring the application state while executing, a disadvantage of this approach is that the

on-line evaluation requires modifying the application in order to monitor specific points of the application. In [Ipek et al., 2005] authors proposed

a method to evaluate the performance prediction based on the input data. They considered to use a multilayer artificial neural network as

prediction method. Their proposal is designed for a specific application, the semicoarseni game multi grid solver (SMG2000). The neural network

consists of a feed forward architecture with an activation sigmoid function. Results showed that artificial neural networks did not have good
performance on predicting the application execution time. This low performance is because the activity of the system, activities as sharing

resources between processes, this generates variations in the performance, which are considered as noise. In [Dauwe et al., 2016] proposed two

prediction models, based on linear regression, and artificial neural networks. These models focused on predicting the performance of the
application in co-located environments. Results determined that neural networks have a better performance than linear regression method.

Although, some of the prediction methods use neural networks, none of these approaches has been unseen platform configurations. Because of

that, we establish the following neural networks are suitable to define a platform-independent prediction method for unseen platform
configurations.

695

3. Artificial Neural network structure design

Several attributes can be considered in order to predict the application runtime. For example in [Carrington et al., 2006] estates that only two

resources are necessary to estimate the application runtime on systems with single-core processors, CPU and network bandwidth. However, we
are dealing with a multi-core environment, and we considered that there are several characteristics that should be taken into account in order to

predict the application runtime. We assumed that the application runtime could be estimated by equation 1.

𝜏𝑎𝑝𝑝 = 𝑓(𝜇, 𝜐, 𝜔, 𝜑, 𝛽) (1)

Where :

 𝜏𝑎𝑝𝑝 represents the application runtime in the distributed system

 𝜇 is the number of Cores used to execute the application

 𝜐 defines the number of nodes used

 𝜔 indicates the operation frequency of the CPU Core

 𝜑 is the memory available on each node

 𝛽 is the network bandwidth in the system

Therefore, for our evaluation we considered these parameters to estimate the runtime of an application.

A) Design of the Neural Network Structure

In order to determine the most optimal neural network configuration for each application, we evaluated several structures of neural

networks for each one of our tested applications. Each network structure was executed thirty times and for each structure evaluation we used a
random sampling validation method [Raychaudhuri, 2008].

We evaluated several structures by varying the following characteristics of the neural network: activation functions (logsig,tansig),

training algorithm (Levenberg-Marquart -LM-, Bayesian Regularization -BR-, and Scaled Conjugated Gradient -SCG-), and the number of

neurons in the hidden layer. Table I contains a summary of the results obtained for each structure. The accuracy of each structure was determined

considering the determination coefficient1 𝑅2 and the root medium squared error2 (RMSE) of each evaluated structure. The best values are shown
in bold in Table I.

Table I Summary of the accuracy of different neural network structures

WRF

 10 Neuros 15 Neuros

Training R^2 MSE 𝑅2 MSE

Algorithm logsig tansig logsig tansig logsig tansig logsig tansig

LM 0.9980 0.9981 23.5988 23.4795 0.9981 0.9981 23.4257 22.9985

BY 0.9984 0.9984 21.5448 21.5567 0.9984 0.9984 21.3765 21.4326

SCG 0.9619 0.9815 94.4068 64.2824 0.9556 0.9799 102.6666 69.8754

Octopus

 10 Neuros 15 Neuros

Training R^2 MSE R^2 MSE

Algorithm logsig tansig logsig tansig logsig tansig logsig tansig

LM 0.9691 0.9679 190.5737 194.4141 0.9709 0.9709 185.2404 185.2850

BY 0.9751 0.9743 170.9223 173.6385 0.9765 0.9757 165.9382 168.5926

SCG 0.9347 0.9504 271.5035 239.0471 0.9258 0.9490 289.3011 241.8977

miniFE

 10 Neuros 15 Neuros

1 Determination coefficient is the variation proportion between the predicted values and the real values. The higher the value, the better the

precision of the model.
2 RMSE measures how much error exists between two datasets, i.e. it is used to compare a predicted value against an observed value. It ranges

from 0 to ∞ and has negative oriented scores. A RMSE value close to zero is better.

696

Training R^2 MSE R^2 MSE

Algorithm logsig tansig logsig tansig logsig tansig logsig tansig

LM 0.9926 0.9926 15.4763 15.5539 0.9928 0.9927 15.2698 15.3684

BY 0.9931 0.9931 14.9572 14.9538 0.9932 0.9932 14.8246 14.8699

SCG 0.9500 0.9736 37.4262 27.4687 0.9535 0.9734 36.9939 27.8267

From the evaluated structures, we selected the most suitable neural network with the higher 𝑅2 and lower RMSE values. As we can see in Table I,

the neural network structure that satisfies this requirements is the network structure with 15 neurons on the hidden layer, Bayesian Regularization
training algorithm, and logsig activation function.

4. Evaluation

This section describes the cluster platform, tools, and applications that we used to carry out our experiments. We also describe the experimental

settings and experiment results obtained for platform-dependent and platform-independent scenarios.

A. Platform, tools, and applications

The underlying platform of our experiments consisted of a cluster with eight nodes, each node has two Intel Quad-core Xeon

processors at 2.13GHz, 16 GBytes of Memory RAM, and they are interconnected through an Ethernet connection 10/100/1000 BaseT. We used

two tools to emulate different platform configurations in this system: cpuupower and wondershaper. cpupower allowed us to manipulate the clock
rate frequency on each core processor whereas wondershaper allowed us to increment or decrement the amount of network bandwidth.

As we mentioned in section I, three different applications were used to evaluate the performance of the neural network. WRF model

[Mesoscale and of NCAR, 2007], Octopus [Developers, 2000], and miniFE [Michael A. Heroux, 2013]. WRF is a cpu- and communication-
intensive application, it forecasts the weather of a specific geographical region. Octopus is also a cpu- and communication-intensive application,

which performs differential finite operations. The main purpose of Octopus is to simulate the electron-ion dynamics of one-, two-, and three-

dimensional finite systems and it is based on time-dependent density-functional theory (TDDFT). Finally, miniFE is a memory-intensive
application. miniFe is a mini application that implements a couple of kernels to solve linear system operations using a conjugate-gradient

algorithm.

The input data of each application remained constant in all the experiments. The input data for the WRF model was fixed to 24 hours of

land surface of $5625 Km2 of the data obtained on March 1st, 2012. The miniFE input data defines the dimension domain of the finite element;
dimension is defined by three parameters nx (335), ny (347), and nz (347). Finally the Octopus performs a simulation of the Benzene molecule.

The energy units was defined in electronvolts, length unit in Armstrongs, the radius of the box shape is 8, and the space between points in the

mesh was 0.10.

B. Experiment description

The experiments were carried out under different resource configuration schemes and platform scenarios, where the combination of both gives a

particular platform configuration. A resource configuration scheme consists of a combination of a defined number of cores. For example, Figure 1

depicts three configuration schemes where the application was executed using four cores. We evaluated the ratio of variation of the execution time
for each configuration scheme. We executed several configuration schemes in the system at a different time and different date. We found that the

coefficient of variation3 of the execution time had a value less than 0.26%, in every configuration. This value indicates that the execution time of a

configuration has a low variation and the execution time can be considered similar for each execution of the same configuration. Therefore, we
considered executing each configuration twice in the experiments was enough. A platform scenario emulates a different platform in the same

system by modifying the system’s characteristics. In our case we modified the CPU frequency and network bandwidth.

3 Coefficient of variation determines the ratio variation of the standard devi- ation respect to the media value. A higher value represent higher

heterogeneity in the data, a lower value indicates higher homogeneity

697

Several platform scenarios were emulated by setting the clock rate frequency at 1.60GHz, 1.73GHz, 2.00GHz, and 2.13GHz, and

network bandwidth at 60Mbps, 80Mbps, and 100Mbps. Each resource configuration scheme was combined with the different platform scenarios

to obtain a particular platform configuration.

a) First configuration scheme

b) Second configuration scheme

 c) Third configuration scheme

Figure 1: Example of three configuration schemes using four Cores to execute the applications

We generated two datasets, which were mutually exclusive. The reference dataset (R-ds) was used for training, validating, and testing the neural

network and contained 765 different platform configurations. Therefore, we had 1530 execution instances for each application (given that each

application was run twice). The dataset E-ds was used to evaluate the prediction accuracy of the neural network in a platform-independent
scenario. The dataset (E-ds) contained 550 instances of unseen platform configurations. Each record of both datasets, R-ds and E-ds, contained the

execution time of an application as well as the platform configuration used in terms of number of cores, number of nodes, amount of bandwidth,

amount of memory, and CPU frequency. Table II depicts the different scenarios contained in each dataset. For example, the dataset R-ds has the
execution time of an application run on the different configuration schemas combining 1 core, within 1 node, a CPU frequency of 1.60GHz, and a

network bandwidth of 100Mbps. The memory remained constant in all the scenarios with a value of 16GBytes.

698

Table II Data of the scenarios on each dataset

 Number of

Frequency Dataset Cores Nodes Bandwidth instances

1.60 GHz

R-ds
1-8 1 100 Mbps 70

2-16 2 100 Mbps 310

E-ds
1-8 1 40,60 Mbps 70

3-24 3 100 Mbps 112

1.73 GHz

R-ds
1-8 1 100 Mbps 70

2-16 2 100 Mbps 290

E-ds
1-8 1 60 Mpbs 32

3-24 3 100 Mbps 112

2.00 GHz
R-ds

1-8 1 60, 80, 100 Mbps 140

2-16 2 100 Mbps 290

E-ds 3-24 3 100 Mbps 112

2.13 GHz
R-ds

1-8 1 100 Mbps 70

2-16 2 100 Mbps 290

E-ds 3-24 3 100 Mbps 112

We observed that the execution time of an application on each single core in the same processor had a coefficient of variation of

0.15%, which means that the execution time of an application is similar for the cores contained within the same processor. However, the execution
time of an application in our platform can vary significantly (e.g. 5.30% in the case of WRF) when it is run on cores of different processors.

Therefore, for the dataset R-ds we only considered configurations of cores of different processors. For instance, in the case of one core and one

node there are two platform configurations e.g. core 0 (processor 1) and core 4 (processor 2). In case of two cores and one node, there are three
platform configurations e.g. [core 0, core 1], [core 0, core 4], and [core 4, core 5]; and so on. Finally, all our experiments assume a free-workload

environment.

C. Evaluation accuracy for a platform-dependent scenario

We evaluated the prediction accuracy of the neural network for seen platform configurations, where the applications had previously
been run. In this case we used the data in R-ds. The dataset was divided randomly in three parts namely as: training, validating, and testing.

Training has 70% of the data, and validation 15%, both were focused on training the neural network and on minimising the overfitting. The testing
part had the remaining 15% of the data and it was focused on measuring the real prediction accuracy of the neural network. We evaluated 10 times

the accuracy of the neural network. Table III presents the statistical results of the prediction accuracy of the neural network for the scenarios

described in the dataset R-ds.

Table III Data of the scenarios on each dataset

 miniFE Octopus WRF

 R2 RMSE R2 RMSE R2 RMSE

Min 0.9930 14.6835 0.9696 155.2306 0.9983 21.1403

Media 0.9932 14.8115 0.9770 164.4985 0.9984 21.4811

Median 0.9933 14.7641 0.9791 157.4070 0.9984 21.3364

Max 0.9934 15.0892 0.9797 189.2693 0.9984 21.9540

Desv. Std. 0.0001 0.1347 0.0041 13.8607 0.0000 0.3286

Table III illustrates the 𝑅2 and RMSE of the neural network for each application. We can see that the 𝑅2 of the WRF model, and
miniFE value remained above of 99%, and their standard deviation is 0.00, which means that for each evaluated iteration the prediction accuracy

was close to each other. On the other hand, the accuracy of the predictions of Octopus decreases to 97%, and its standard deviation is also close to
zero. Thus, each evaluated iteration has the same accuracy value.

699

The RMSE value for miniFE and WRF were low. In the case of Octopus the RMSE was a little bit high. This is because the accuracy

of Octopus was 2% lower than the accuracy of WRF and miniFE.

D. Evaluation accuracy for a platform-independent scenario

In this case, we used the same neural network that we generated with the dataset R-ds in the platform-dependent scenario. We
evaluated the accuracy of the neural network for unseen platforms (i.e. the platform-independent scenario), where the dataset E-ds (detailed in

Section IV.B) contains the data used to evaluate the prediction accuracy for unseen platform configurations. The accuracy was measured by

considering the 𝑅2 and the RMSE. Table IV shows the statistical results of the neural network method for each application.

Table IV Neural network model accuracy on unseen platforms

 miniFE Octopus WRF

 R2 MSE R2 MSE R2 MSE

Min 0.1789 86.8003 -0.7694 758.1247 0.1095 447.6400

Average 0.4611 312.7932 0.1214 2860.0835 0.4504 878.4788

Median 0.4377 292.1792 0.2017 2641.9448 0.4765 776.8977

Max 0.7860 601.6973 0.9126 6561.3607 0.7686 1914.8131

Desv. Std. 0.1996 146.5209 0.5221 1765.8757 0.2631 442.0952

As we see in Table IV, the 𝑅2 of the neural network decreases when it estimates the application runtime on an unseen platform. The 𝑅2

average accuracy drops down under 50%, however, the most significant decrement in accuracy is observed with Octopus, where the 𝑅2 accuracy
achieves an average of 12%. We also can see that the RMSE value significantly increases and clearly overpasses the values acquired by the neural

network that estimates the application execution time based on the data obtained from the reference dataset R-ds.

5. Discussion

Our results show that the prediction accuracy of an application runtime on the same platform is very accurate since the neural network 𝑅2on all
the applications was above of 97%, and the RMSE value was low. But when the neural network was evaluated with the data of the emulated

platform (i.e. in the case of the platform-independent scenario), its 𝑅2 decreased below 50% for all the applications. Besides, the RMSE
significantly increased compared to the RMSE obtained with the platform-dependent model.

These results could indicate that the selected neural network structure is overfitted, and the number of neurons in the hidden layer

needs to be larger. However, we increased the number of neurons to 25 and 30 and we found that the prediction accuracy in the same platform

remained above of 97%, but when a platform-independent scenario was used, the prediction accuracy for 25 neurons was 41%, and for 30 was

37%. We did not continue increasing the number of neurons because we could create an under fitted structure.

Although neural networks have been successfully employed to represent the non-linear behaviour of a system in different application
domain areas, we have showed that neural networks are not suitable in for platform-independent performance prediction models. The reason of

this can be that the neural network is affected by the input data in the learning process [Raza and Baharudin, 2012]. This is because the training

algorithm adjusts the weights of the neurons according to the input data, hence, when the information changes abruptly the neural network is not
able to estimate the application runtime. Although the datasets were randomly divided, this technique may not be suitable. Therefore, it could be

necessary to implement another selection technique in order to reduce the sensitivity of the neural network to the input data in the learning process

[Hayashida et al., 2014].

We believe further research is required to explore the suitability for defining platform-independent prediction models based on other
machine learning techniques such as classification trees and classification and regression trees. This, given that such techniques have been used as

prediction methods in different areas such as the medical area [AL-Dlaeen and Alashqur, 2014], hardware detection failure [Li et al., 2014], and

for predicting the resource usage and the execution time of applications exhibiting non-linear behaviour and running on multi-core systems [Li et
al., 2009][Matsunaga and Fortes, 2010].

6. Conclusion

Our goal was to evaluate the suitability of artificial neural networks for defining a platform-independent model able to predict the runtime of long-
running applications in multi-core systems. We evaluated artificial neural networks because they have shown successful to accurately model the

behaviour of systems, including non-linear systems, in different application domains.

In our study we defined an optimal neural network structure by evaluating different essential attributes of the neural networks. Our

results showed that the structure should have 15 neurons in the hidden layer, the Bayesian Regularization training algorithm, and the logsig
activation function. The neural network successfully modelled the performance of the tested applications in a platform-dependent scenario.

However, the neural network structure was unsuccessful to provide accurate performance prediction values, for all the applications we tested, in a

platform-independent scenario. We found that the accuracy significantly decreased below 50% for each tested application.

700

As future work, we will continue evaluating other machine-learning techniques in order to achieve a platform-independent approach to

runtime prediction of long-running applications in a multi-core distributed environment.

References

[AL-Dlaeen and Alashqur, 2014] AL-Dlaeen, D. and Alashqur, A. (2014). Using decision tree classification to assist in the prediction of

alzheimer’s disease. In Computer Science and Information Technology (CSIT), 2014 6th International Conference on, pages 122–126.

[Carrington et al., 2006] Carrington, L., Snavely, A., and Wolter, N. (2006). A performance prediction framework for scientific applications.
Future Gener. Comput. Syst., 22(3):336–346.

[Developers, 2000] Developers, O. T. (2000). Octopus. Accesed : 27/11/2014.

[Dodonov and de Mello, 2010] Dodonov, E. and de Mello, R. F. (2010). A novel approach for distributed application scheduling based on pre-
diction of communication events. Future Generation Computer Systems, 26(5):740 – 752.

[Dong et al., 2012] Dong, F., Luo, J., Song, A., Cao, J., and Shen, J. (2012). An effective data aggregation based adaptive long term cpu load
prediction mechanism on computational grid. Future Gener. Comput. Syst., 28(7):1030–1044.

[Gianni et al., 2010] Gianni, D., Iazeolla, G., and D’Ambrogio, A. (2010). A methodology to predict the performance of distributed simulations.

In Principles of Advanced and Distributed Simulation (PADS), 2010 IEEE Workshop on, pages 1 –9.
[Hayashida et al., 2014] Hayashida, T., Nishizaki, I., Sekizaki, S., and Nishida, M. (2014). Structural optimization of neural networks and train-

ing data selection method for prediction. In Computational Intelligence and Applications (IWCIA), 2014 IEEE 7th International

Workshop on, pages 171–176.
[Hu et al., 2012] Hu, L., Che, X.-L., and Zheng, S.-Q. (2012). Online system for grid resource monitoring and machine learning-based prediction.

Parallel and Distributed Systems, IEEE Transactions on, 23(1):134 –145.

[Ipek et al., 2005] Ipek, Engin, de Supinski, Brunis R., Schulz, Martin, and McKee, Sally A. An Approach to Performance Prediction for Parallel
Applications. Cunha Jose, and Medeiro Pedros, editors, Euro-Par, pages 196-205. Springer 2005.

[Kundu et al., 2010] Kundu, S., Rangaswami, R., Dutta, K., and Zhao, M. (2010). Application performance modeling in a virtualized

environment. In High Performance Computer Architecture (HPCA), 2010 IEEE 16th International Symposium on, pages 1 –10.
[Li et al., 2009] Li, B., Peng, L., and Ramadass, B. (2009). Accurate and efficient processor performance prediction via regression tree based

modeling. J. Syst. Archit., 55:457–467.

[Li et al., 2014] Li, J., Ji, X., Jia, Y., Zhu, B., Wang, G., Li, Z., and Liu, X. (2014). Hard drive failure prediction using classification and
regression trees. In Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference on, pages 383–

394.

[Matsunaga and Fortes, 2010] Matsunaga, A. and Fortes, J. (2010). On the use of machine learning to predict the time and resources consumed by
applications. In Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on, pages 495–504.

[Mesoscale and of NCAR, 2007] Mesoscale and of NCAR, M. M. M. D. (2007). Weather research and forecasting model. Accesed : 27/11/2014.

[Michael A. Heroux, 2013] Michael A. Heroux, S. N. L. (2013). Finite element mini application minife. Accesed : 27/11/2014.
[Oliner et al., 2011] Oliner, A., Ganapathi, A., and Xu, W. (2011). Advances and challenges in log analysis. Queue, 9(12):30:30–30:40.

[Oyamada et al., 2008] Oyamada, M. S., Zschornack, F., and Wagner, F. R. (2008). Applying neural networks to performance estimation of

embedded software. Journal of Systems Architecture, 54(12):224 – 240.

[Qian et al., 2008] Qian, Z., Zeng, M., Qi, D., and Xu, K. (2008). A dynamic scheduling algorithm for distributed kahn process networks in a

cluster environment. In Computational Intelligence and Industrial Application, 2008. PACIIA ’08. Pacific-Asia Workshop on, volume

2, pages 36 –42.
[Raychaudhuri, 2008] Raychaudhuri, S. (2008). Introduction to monte carlo simulation. In Simulation Conference, 2008. WSC 2008. Winter,

pages 91–100.

[Raza and Baharudin, 2012] Raza, M. and Baharudin, Z. (2012). A review on short term load forecasting using hybrid neural network techniques.
In Power and Energy (PECon), 2012 IEEE International Conference on, pages 846–851.

[Sanjay and Vadhiyar, 2008] Sanjay, H. A. and Vadhiyar, S. (2008). Perfor- mance modeling of parallel applications for grid scheduling. J.

Parallel Distrib. Comput., 68(8):1135–1145.
[Sarangi and Bhattacharya, 2005] Sarangi, A. and Bhattacharya, A. (2005). Comparison of artificial neural network and regression models for

sedi- ment loss prediction from banha watershed in india. Agricultural Water Management, 78(3):195 – 208.

[Sharkawi et al., 2012] Sharkawi, S., DeSota, D., Panda, R., Stevens, S., Taylor, V., and Wu, X. (2012). Swapp: A framework for performance
projections of hpc applications using benchmarks. In Parallel and Distributed Processing Symposium Workshops PhD Forum

(IPDPSW), 2012 IEEE 26th International, pages 1722–1731.

[Shimizu et al., 2009] Shimizu, S., Rangaswami, R., Duran-Limon, H. A., and Corona-Perez, M. (2009). Platform-independent modeling and
prediction of application resource usage characteristics. Journal of Systems and Software, 82(12):2117 – 2127.

[Tsafrir et al., 2007] Tsafrir, D., Etsion, Y., and Feitelson, D. G. (2007). Backfilling using system-generated predictions rather than user runtime

estimates. IEEE Trans. Parallel Distrib. Syst., 18(6):789–803.
[Upadhyaya et al., 2013] Upadhyaya, S., Farahmand, K., and Baker- Demaray, T. (2013). Comparison of NN and LR classifiers in the context of

screening native american elders with diabetes. Expert Systems with Applications, 40(15):5830 – 5838.

[Yang et al., 2005] Yang, L. T., Ma, X., and Mueller, F. (2005). Cross- platform performance prediction of parallel applications using partial
execution. In Proceedings of the 2005 ACM/IEEE conference on Super- computing, SC ’05, pages 40–, Washington, DC, USA. IEEE

Computer Society.

