Influencia de la Inteligencia Artificial en el ámbito educativo
DOI:
https://doi.org/10.29105/vtga10.6-1039Palabras clave:
Inteligencia Artificial, Ética, Seguridad y PrivacidadResumen
Este estudio investiga los efectos de la inteligencia artificial en la eficiencia de la toma de decisiones, la propensión a la pereza y los problemas de privacidad entre los estudiantes universitarios de México. Aunque la educación, al igual que otros sectores, ha integrado tecnologías de IA para enfrentar desafíos contemporáneos, es alarmante que muchas investigaciones e instituciones a nivel mundial resalten únicamente los beneficios de la IA, omitiendo sus riesgos. Este estudio emplea el software PLS-Smart para analizar los datos recabados de 285 estudiantes de una universidad de negocios, seleccionados mediante muestreo intencional. Los hallazgos indican que la IA impacta significativamente en las decisiones humanas y contribuye a la pereza. Además, presenta riesgos para la seguridad y la privacidad, siendo la pereza el aspecto más afectado. La investigación argumenta la necesidad de adoptar medidas de precaución antes de implementar tecnología de IA en el sector educativo. Ignorar las preocupaciones fundamentales sobre la IA podría resultar perjudicial. Se aconseja prestar especial atención al diseño, implementación y uso ético de la IA en educación.
Descargas
Citas
Ade-Ibijola A, Young K, Sivparsad N, Seforo M, Ally S, Olowolafe A., & Frahm-Arp M. (2022) Teaching Students About Plagiarism Using a Serious Game (Plagi-Warfare): Design and Evaluation Study. JMIR Serious Games 10(1): e33459. https://doi.org/10.2196/33459 DOI: https://doi.org/10.2196/33459
Ahmad S.F., Ibrahim M., & Nadeem A.H. (2021) Impact of ethics, stress and trust on change management in public sector organizations. Gomal University Journal of Research, 37 (1):43–54. DOI: https://doi.org/10.51380/gujr-37-01-05
Ahmad, S. F., Rahmat, M. K., Mubarik, M. S., Alam, M. M., & Hyder, S. I. (2021). Artificial intelligence and its role in education. Sustainability, 13(22), 12902. https://doi.org/10.3390/su132212902 DOI: https://doi.org/10.3390/su132212902
Ahmed S., & Nashat, N. (2020) Model for utilizing distance learning post COVID-19 using (PACT)™ a cross sectional qualitative study. Research Square, 1–25. https://doi.org/10.21203/rs.3.rs-31027/v1 DOI: https://doi.org/10.1186/s12909-020-02311-1
Akram H, Yingxiu Y., Al-Adwan A.S., & Alkhalifah, A. (2021) Technology Integration in Higher Education During COVID-19: An Assessment of Online Teaching Competencies Through Technological Pedagogical Content Knowledge Model. Frontiers in Psychology, 12:736522. https://doi.org/10.3389/fpsyg.2021.736522 DOI: https://doi.org/10.3389/fpsyg.2021.736522
Al-Ansi A (2022) Investigating Characteristics of Learning Environments During the COVID-19 Pandemic: A Systematic Review. Canadian Journal of Learning and Technology, 48(1), 1-26. https://doi.org/10.21432/cjlt28051 DOI: https://doi.org/10.21432/cjlt28051
Andreotta A.J., Kirkham N., & Rizzi M. (2021) AI, big data, and the future of consent. AI Society. 37, 1715-1728. https://doi.org/10.1007/s00146-021-01262-5 DOI: https://doi.org/10.1007/s00146-021-01262-5
Baron, N. S. (2023). Even kids are worried ChatGPT will make them lazy plagiarists, says a linguist who studies tech’s effect on reading, writing and thinking. Fortune. https://fortune.com/2023/01/19/what-is-chatgpt-ai-effect-cheating-plagiarism-laziness-education-kids-students/
Bartneck, C., Lütge, C., Wagner, A., & Welsh, S. (2021). An introduction to ethics in robotics and AI (p. 117). Springer Nature. DOI: https://doi.org/10.1007/978-3-030-51110-4
Bartoletti I (2019) AI in healthcare: ethical and privacy challenges. In: Artificial Intelligence in Medicine: 17th Conference on Artificial Intelligence in Medicine, AIME 2019 (pp. 7–10). Springer International Publishing, Poznan, Poland. DOI: https://doi.org/10.1007/978-3-030-21642-9_2
Bhbosale S, Pujari V, Multani Z (2020) Advantages and disadvantages of artificial intellegence. Aayushi International Interdisciplinary Research Journal,77, 227–230
Cavus N.; Mohammed Y.B.; & Yakubu M.N. (2021) Determinants of learning management systems during COVID-19 pandemic for sustainable education. Sustainability 13(9), 5189. https://doi.org/10.3390/su13095189 DOI: https://doi.org/10.3390/su13095189
Chan L, Morgan I, Simon H, Alshabanat F, Ober D, Gentry J, ... & Cao R (2019) Survey of AI in cybersecurity for information technology management. In: 2019 IEEE technology & engineering management conference (TEMSCON), Atlanta, (pp. 1–8). DOI: https://doi.org/10.1109/TEMSCON.2019.8813605
Danaher J (2018) Toward an ethics of AI assistants: an initial framework. Philosophy & Technology, 31(4), 629-653. https://doi.org/10.1007/s13347-018-0317-3 DOI: https://doi.org/10.1007/s13347-018-0317-3
Dastin, J. (2022). Amazon scraps secret AI recruiting tool that showed bias against women. In Ethics of data and analytics (pp. 296-299). Auerbach Publications. DOI: https://doi.org/10.1201/9781003278290-44
Dautov, D. (2020). Procrastination and laziness rates among students with different academic performance as an organizational problem. In E3S web of conferences (Vol. 210, p. 18078). EDP Sciences. DOI: https://doi.org/10.1051/e3sconf/202021018078
Davies, M. B., & Hughes, N. (2014). Doing a successful research project: Using qualitative or quantitative methods. Bloomsbury Publishing. DOI: https://doi.org/10.1007/978-1-137-30650-0
Duan Y, Edwards JS, Dwivedi YK (2019) Artificial intelligence for decision making in the era of Big Data—evolution, challenges, and research agenda. International Journal of Information Management 48, 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021 DOI: https://doi.org/10.1016/j.ijinfomgt.2019.01.021
Farrow E (2022) Determining the human to AI workforce ratio—exploring future organisational scenarios and the implications for anticipatory workforce planning. Technology in Society, 68, 101879. https://doi.org/10.1016/j.techsoc. 2022.101879 DOI: https://doi.org/10.1016/j.techsoc.2022.101879
Fjelland R (2020) Why general artificial intelligence will not be realized. Humanities and Social Sciences Communications, 7(10), 1–9. https://doi.org/10.1057/s41599-020-0494-4 DOI: https://doi.org/10.1057/s41599-020-0494-4
Ghosh B, Daugherty PR, Wilson HJ (2019) Taking a systems approach to adopting AI. Harvard Business Review. https://hbr.org/2019/05/taking-a-systems-approach-toadopting-ai
Hair J, Alamer A (2022) Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: guidelines using an applied example. Research Methods in Applied Linguistics, 1(3), 100027. https://doi.org/10.1016/j.ijinfomgt.2019.01.021 DOI: https://doi.org/10.1016/j.rmal.2022.100027
Hair Jr JF, Ringle CM, Sarstedt M (2013) Partial least squares structural equation modeling: rigorous applications, better results and higher acceptance. Long Range Planning, Volume 46 (1–2). 1-12. https://doi.org/10.1016/j.lrp.2013.01.001 DOI: https://doi.org/10.1016/j.lrp.2013.01.001
Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., Ray, S., ... & Ray, S. (2021). An introduction to structural equation modeling. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook. (pp. 1-29). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-80519-7_1
Hair Jr, J.F., Howard M.C., & Nitzl C (2020) Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of business research, 109, 101–110. https://doi.org/10.1016/j.jbusres.2019.11.069 DOI: https://doi.org/10.1016/j.jbusres.2019.11.069
Ho, M. T., Mantello, P., Ghotbi, N., Nguyen, M. H., Nguyen, H. K. T., & Vuong, Q. H. (2022). Rethinking technological acceptance in the age of emotional AI: surveying Gen Z (Zoomer) attitudes toward non-conscious data collection. Technology in Society, 70, 102011. https://doi.org/10.1016/j.techsoc.2022.102011 DOI: https://doi.org/10.1016/j.techsoc.2022.102011
Holmes W, Bialik M, Fadel C (2019) Artificial intelligence in education. Promise and implications for teaching and learning. Center for Curriculum Redesign, Boston, MA: ISBN-13: 978-1-794-29370-0. DOI: https://doi.org/10.1007/978-3-319-60013-0_107-1
Hu, L. T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to under parameterized model misspecification. Psychological Methods, 3(4), 424–453. https://doi.org/10.1037/1082-989x.3.4.424 DOI: https://doi.org/10.1037//1082-989X.3.4.424
Hübner, D. (2021). Two kinds of discrimination in AI-based penal decision-making.ACM SIGKDD Explorations Newsletter, 23, 4–13. https://doi.org/10.1145/3468507.3468510 DOI: https://doi.org/10.1145/3468507.3468510
Ilhomjon, H. A. T. O. K. (2023). Advantages and Disadvantages of Artificial Intelligence. International journal of advanced research in education, technology, and management, 2(6), 433-439. https://doi.org/10.5281/zenodo.8065011
Jordan, P. J., & Troth, A. C. (2020). Common method bias in applied settings: the dilemma of researching in organizations. Australian Journal of Management, 45(1), 3-14. https://doi.org/10.1177/0312896219871 DOI: https://doi.org/10.1177/0312896219871976
Kamenskih, A. (2022). The analysis of security and privacy risks in smart education environments. Journal of Smart Cities and Society, 1(1), 17-29. https://doi.org/10.3233/SCS-210114 DOI: https://doi.org/10.3233/SCS-210114
Karandish, D. (06/23/2021) 7 Benefits of AI in education. The Journal. https://thejournal.com/Articles/2021/06/23/7-Benefits-of-AI-in-Education.aspx
Köbis, L., & Mehner, C. (2021). Ethical questions raised by AI-supported mentoring in higher education. Frontiers in Artificial Intelligence, 4, 624050. https://doi.org/10.3389/frai.2021.624050 DOI: https://doi.org/10.3389/frai.2021.624050
Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration, 11(4), 1-10. https://doi.org/10.4018/ijec.2015100101 DOI: https://doi.org/10.4018/ijec.2015100101
Leeming, J. (2021). How AI is helping the natural sciences. Nature, 598(7880), 5-7. https://www.nature.com/articles/d41586-021-02762-6 DOI: https://doi.org/10.1038/d41586-021-02762-6
Lv, Z., Han Y., Singh A.K., Manogaran, G., & Lv, H. (2020) Trustworthiness in industrial IoT systems based on artificial intelligence. IEEE Transactions on Industrial Informatics, 17 (2), 1496 - 1504. https://doi.org/10.1109/TII.2020.2994747 DOI: https://doi.org/10.1109/TII.2020.2994747
Mantello, P., Ho, M. T., Nguyen, M. H., & Vuong, Q. H. (2023). Bosses without a heart: socio-demographic and cross-cultural determinants of attitude toward Emotional AI in the workplace. AI & society, 38(1), 97-119. https://doi.org/10.1007/s00146-021-1290-1 DOI: https://doi.org/10.1007/s00146-021-01290-1
McStay, A. (2020). Emotional AI and EdTech: serving the public good? Learning, Media and Technology, 45(3), 270-283. https://doi.org/10.1080/17439884.2020.1686016 DOI: https://doi.org/10.1080/17439884.2020.1686016
Meissner, P., & Keding, C. (10/12/2021). The human factor in AI-based decision-making. MIT Sloan Management Review, 63(1), 1-5.
Mhlanga, D. (2021). Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from emerging economies? Sustainability, 13(11), 5788. https://doi.org/10.3390/su13115788 DOI: https://doi.org/10.3390/su13115788
Nakitare, J., & Otike, F. (2023). Plagiarism conundrum in Kenyan universities: an impediment to quality research. Digital Library Perspectives, 39(2), 145-165. https://doi.org/10.1108/dlp-08-2022-0058 DOI: https://doi.org/10.1108/DLP-08-2022-0058
Nawaz, N., Gomes, A. M., & Saldeen, M. A. (2020). Artificial intelligence (AI) applications for library services and resources in COVID-19 pandemic. Journal Of Critical Reviews, 7(18), 1951–1955. covidwho-829193
Nemorin, S., Vlachidis, A., Ayerakwa, H. M., & Andriotis, P. (2023). AI hyped? A horizon scan of discourse on artificial intelligence in education (AIED) and development. Learning, Media and Technology, 48(1), 38-51. https://doi.org/10.1080/17439884.2022.2095568 DOI: https://doi.org/10.1080/17439884.2022.2095568
Niese, B. (2019) Making good decisions: an attribution model of decision quality in decision tasks. [Doctor Dissertation, Kennesaw State University] https://digitalcommons.kennesaw.edu/cgi/viewcontent.cgi?article=1013&context=phdba_etd
Nikita (2023) Advantages and Disadvantages of Artificial Intelligence. Simplilearn. https://www.simplilearn.com/advantages-and-disadvantages-of-artificialintelligence-article
Oh, C., Lee, T., Kim, Y., Park, S., Kwon, S., & Suh, B. (2017, May). Us vs. them: Understanding artificial intelligence technophobia over the google deepmind challenge match. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (pp. 2523-2534). DOI: https://doi.org/10.1145/3025453.3025539
Owoc, M. L., Sawicka, A., & Weichbroth, P. (2019, August). Artificial intelligence technologies in education: benefits, challenges and strategies of implementation. In IFIP International Workshop on Artificial Intelligence for Knowledge Management (pp. 37-58). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-85001-2_4
Petousi V, Sifaki E (2020) Contextualizing harm in the framework of research misconduct. Findings from discourse analysis of scientific publications. Int J Sustain Dev 23(3-4):149–174. https://doi.org/10.1504/IJSD.2020.10037655
Petousi, V., & Sifaki, E. (2020). Contextualising harm in the framework of research misconduct. Findings from discourse analysis of scientific publications. International Journal of Sustainable Development, 23(3-4), 149-174. https://doi.org/10.1504/IJSD.2020.115206 DOI: https://doi.org/10.1504/IJSD.2020.115206
Quinlan, D. M., Swain, N., Cameron, C., & Vella-Brodrick, D. A. (2015). How ‘other people matter’in a classroom-based strengths intervention: Exploring interpersonal strategies and classroom outcomes. The Journal of Positive Psychology, 10(1), 77-89. https://doi.org/10.1080/17439760.2014.920407 DOI: https://doi.org/10.1080/17439760.2014.920407
Rainie, L., Anderson, J., & Vogels, E. A. (2021). Experts doubt ethical AI design will be broadly adopted as the norm within the next decade. Pew Research Center, 16.
Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of management review, 46(1), 192-210. https://doi.org/10.5465/amr.2018.0072 DOI: https://doi.org/10.5465/amr.2018.0072
Raso, F. A., Hilligoss, H., Krishnamurthy, V., Bavitz, C., & Kim, L. (2018). Artificial intelligence & human rights: Opportunities & risks. Berkman Klein Center Research Publication, (2018-6). http://nrs.harvard.edu/urn-3:HUL.InstRepos:38021439 DOI: https://doi.org/10.2139/ssrn.3259344
Rosé, C. P., Martínez-Maldonado, R., Hoppe, H. U., Luckin, R., Mavrikis, M., Porayska-Pomsta, K., ... & Du Boulay, B. (Eds.). (2018). Artificial Intelligence in Education: 19th International Conference, AIED 2018, London, UK, June 27–30, 2018, Proceedings, Part I (Vol. 10947). Springer.
Ross, J. (2021). Does the rise of AI spell the end of education. Times Higher Education, 2(4868), 32-37.
Samtani, S., Kantarcioglu, M., & Chen, H. (2021). A multi-disciplinary perspective for conducting artificial intelligence-enabled privacy analytics: Connecting data, algorithms, and systems. ACM Transactions on Management Information Systems, 12(1), 1-18. https://doi.org/10.1145/3447507 DOI: https://doi.org/10.1145/3447507
Saura, J. R., Ribeiro-Soriano, D., & Palacios-Marqués, D. (2022). Assessing behavioral data science privacy issues in government artificial intelligence deployment. Government Information Quarterly, 39(4), 101679. . https://doi.org/10.1016/j.giq.2022.101679 DOI: https://doi.org/10.1016/j.giq.2022.101679
Shrestha, Y. R., Ben-Menahem, S. M., & Von Krogh, G. (2019). Organizational decision-making structures in the age of artificial intelligence. California management review, 61(4), 66-83. https://doi.org/10.1177/0008125619862257 DOI: https://doi.org/10.1177/0008125619862257
Siau, K., & Wang, W. (2020). Artificial intelligence (AI) ethics: ethics of AI and ethical AI. Journal of Database Management (JDM), 31(2), 74-87. https://doi.org/10.4018/JDM.2020040105 DOI: https://doi.org/10.4018/JDM.2020040105
Štrbo, M. (2020, December). AI based smart teaching process during the Covid-19 pandemic. In 3rd International Conference on Intelligent Sustainable Systems (ICISS) (pp. 402-406). IEEE. DOI: https://doi.org/10.1109/ICISS49785.2020.9315963
Suh, W., & Ahn, S. (2022). Development and validation of a scale measuring student attitudes toward artificial intelligence. Sage Open, 12(2), 21582440221100463. https://doi.org/10.1177/21582440221100463 DOI: https://doi.org/10.1177/21582440221100463
Taddeo, M., McCutcheon, T., & Floridi, L. (2019). Trusting artificial intelligence in cybersecurity is a double-edged sword. Nature Machine Intelligence, 1(12), 557-560. https://doi.org/10.1038/s42256-019-0109-1 DOI: https://doi.org/10.1038/s42256-019-0109-1
Tahiru, F. (2021). AI in education: A systematic literature review. Journal of Cases on Information Technology, 23(1), 1-20. https://doi.org/10.4018/JCIT.2021010101 DOI: https://doi.org/10.4018/JCIT.2021010101
VanLangen, K. M., Sahr, M. J., Salvati, L. A., Meny, L. M., Bright, D. R., & Sohn, M. (2021). Viability of virtual skills-based assessments focused on communication. American Journal of Pharmaceutical Education, 85(7), 8378. https://doi.org/10.5688/ajpe8378 DOI: https://doi.org/10.5688/ajpe8378
Weyerer, J. C., & F. Langer, P.F. (2019, June). Garbage in, garbage out: The vicious cycle of ai-based discrimination in the public sector. In Proceedings of the 20th Annual International Conference on Digital Government Research (pp. 509-511). DOI: https://doi.org/10.1145/3325112.3328220
Youn, S. (2009). Determinants of online privacy concern and its influence on privacy protection behaviors among young adolescents. Journal of Consumer affairs, 43(3), 389-418. DOI: https://doi.org/10.1111/j.1745-6606.2009.01146.x
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Maria de Jesus Araiza-Vazquez
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publiquen en la revista VinculaTégica EFAN aceptan el siguiente aviso de derechos de autor:
a). Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación de la obra bajo una licencia de atribución de Creative Commons. Esta licencia permite a otros compartir la obra siempre que se reconozca la autoría original y la publicación inicial en esta revista.
b). Los autores pueden establecer acuerdos contractuales adicionales de manera independiente para la distribución no exclusiva de la versión publicada en la revista (por ejemplo, publicarla en un repositorio o incluirla en un libro), siempre que se reconozca la publicación inicial en esta revista.
c). Se permite a los autores autoarchivar su trabajo en repositorios institucionales o en su propio sitio web antes y durante el proceso de envío, ya que esto puede fomentar intercambios productivos y aumentar la citación temprana y general del trabajo publicado.