Digitalización en la auditoría externa-desafíos para la educación y la formación profesional en México

Autores/as

  • Manrico Maria Scheliga Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/vtga7.2-16

Palabras clave:

Digitalización

Resumen

La digitalización plantea importantes desafíos para los auditores externos y los auditores internos en particular. Para que las profesionales de la auditoria y la próxima generación de auditores estén preparadas para el futuro digital, es importante comprobar los conceptos de la formación universitaria y educación profesional en una etapa temprana y adaptarlos si es necesario. El siguiente artículo describe las posibles consecuencias de la digitalización para los profesionales de la auditoria externa e interna. Se entrevistó a de 108 auditores externos e internos para proporcionar una descripción general de los requisitos técnicos futuros para futuras carreras relacionadas a la auditoria. Los cambios necesarios en la educación universitaria, así como en la educación profesional continua, y se pueden derivarse de las respuestas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abbott, L., Parker, S., Peters, G., & Rama, D. (2007). Corporate Governance, Audit Quality, and the Sarbanes‐Oxley Act: Evidence from Internal Audit Outsourcing. The Accounting Review, 84(4), 803–835. DOI: https://doi.org/10.2308/accr.2007.82.4.803

Adiloglu, B., & Gungor, N. (2019). THE IMPACT OF DIGITALIZATION ON THE AUDIT PROFESSION: A REVIEW OF TURKISH INDEPENDENT AUDIT FIRMS. Journal of Business Economics and Finance, 4, 209-214. DOI: https://doi.org/10.17261/Pressacademia.2019.1164

Alles, M. (2015). Drivers of the use and facilitators and obstacles of the evolution of big data by the audit profession. Accounting Horizons, 29(2), 439-449. DOI: https://doi.org/10.2308/acch-51067

Balios, D. (2021). The Impact of Big Data on Accounting and Auditing. International Journal of Corporate Finance and Accounting, 8(1), 1-14. DOI: https://doi.org/10.4018/IJCFA.2021010101

Barrados, M., & Lonsdale, J. (2020). Opportunities, Crossover of Audit and Evaluation Practices: Challenges and Opportunities. London: Routledge. DOI: https://doi.org/10.4324/9781003021025

Bhattacherjee, A. (2012). Social science research: Principles, methods, and practices. Tampa: Universtiy of South Florida: Scholar Commons.

Chin, W. W. (1998). Issues and opinions on structural equation modeling. MIS Quarterly, 22(1), 7-16.

Chin, W. W. (2001). PLS-Graph User’s Guide Version 3.0. Soft Modeling Inc.

Cipek, K., & Ljutić, I. (2021). THE INFLUENCE OF DIGITALIZATION ON TAX AUDIT. Oditor, 7(1), 53-69. DOI: https://doi.org/10.5937/Oditor2101037C

Clifford, C. (2019). Bill Gates: A.I. is like nuclear energy — ‘both promising and dangerous’. Retrieved from CNBC. Obtenido de CNBC: https://www.cnbc.com/2019/03/26/bill-gatesartificial-intelligence-both-promising-and-dangerous.html

Cronbach, L. J. (1970). Essentials of Psychological Testing. Nueva York: Harper & Row.

Falk, R., & Miller, N. (1992). A Primer for Soft Modeling. Akron, OH: The University of Akron.

Gulin, D., Hladika, M., & Valenta, I. (2019). Digitalization and the Challenges for the Accounting. ENTRENOVA, 502-511. DOI: https://doi.org/10.2139/ssrn.3492237

Henrizi, P., Himmlesbach, D., & Hunziker, S. (2021). Anchoring and adjustment effects on audit judgments: experimental evidence from Switzerland. Journal of Applied Accounting Research. DOI: https://doi.org/10.1108/JAAR-01-2020-0011

Howieson, B., Hancock, P., Segal, N., Kavanagh, M., Tempone, I., & Kent, I. (2014). Who should teach what? Australian perceptions of the roles of universities and practice in the education of professional accountants. Journal of Accounting Education, 22(1), 259–275. DOI: https://doi.org/10.1016/j.jaccedu.2014.05.001

IAESB. (2015). Consultation Paper, Meeting Future Expectations of Professional Competence: A Consultation on the IAESB’s Future Strategy and Priorities. IFAC.

IFAC . (2018). About IFAC. Obtenido de https://www.ifac.org

Issa, H., Sun, T., & Vasarhelyi, M. (2016). Research ideas for artificial intelligence in auditing: The formalization of audit and workforce supplementation. DOI: https://doi.org/10.2308/jeta-10511

Kaiser, H. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141-151. DOI: https://doi.org/10.1177/001316446002000116

Lee, M., Cho, M., Gim, J., Jeong, D., & Jung, H. (2014). Prescriptive analytics system for scholar research performance enhancement. International conference on human-computer interaction, 186-190. DOI: https://doi.org/10.1007/978-3-319-07857-1_33

Lind, D., Marchal, W., & Wathen, S. (2012). Estadística aplicada a los negocios y la economía. Ciudad de México: McGrawHill.

Littley, J. (2012). Leveraging Data Analytics and Continuous Auditing Processes for Improved Audit Planning, Effectiveness, and Efficiency. . Obtenido de KPMG White Paper: http://www. kpmg.com/US/en/IssuesAndInsights/ArticlesPublications/Documents/data-analyticscontinuous-auditing. pdf.

Manita, R., Elommal, N., Baudier, P., & Hikkerova, L. (2020). The digital transformation of external audit and its impact on corporate governance. Technological Forecasting and Social Change, 150(C). DOI: https://doi.org/10.1016/j.techfore.2019.119751

Maradona, A. (2020). A Qualitative Exploration of Heuristics and Cognitive Biases in Auditor Judgements. Accountability, 9(2), 94-112. DOI: https://doi.org/10.32400/ja.30634.9.2.2020.94-112

Marmolejo-Ramos, F., & Siva Tian, T. (2010). The shifting boxplot. A boxplot based on essential summary statistics around the mean. International Journal of Psychological Research, 3(1), 37-45. DOI: https://doi.org/10.21500/20112084.823

Meuldijk, M. (2017). Impact of digitalization on the audit profession. Audit Comitee News, 33-35.

Mohajan, H. K. (2018). Qualitative research methodology in social sciences and related subjects. Journal of Economic Development, Environment and People, 7(1), 23-48. DOI: https://doi.org/10.26458/jedep.v7i1.571

Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S. (2016). Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeton : Princeton University Pess.

Pedrosa, I., & Costa, C. (2012). Computer Assisted Audit Tools and Techniques in Real World: CAATT's Applications and Approaches in Context. International Journal of Computer Information Systems and Industrial Management Applications., 4, 161-168.

Plant, K., Barac, K., & Sarens, G. (2019). Preparing work-ready graduates – skills development lessons learnt from internal audit practice. Journal of Accounting Education, 48, 33-47. DOI: https://doi.org/10.1016/j.jaccedu.2019.06.001

Recker, J. (2013). Scientific research in information systems: a beginner's guide. Berlin: Springer Science & Business Media. DOI: https://doi.org/10.1007/978-3-642-30048-6

Schulman, J., & Wilson, S. (2019). How blockchain technology will affect the audit. Obtenido de https://rsmus.com/what-we-do/services/assurance/howblockchain-technology-will-affect-the-audit.html

Springer Sargent, C., & Faye Borthick, A. (2013). Evidence for Insisting on Cognitive Conflict Tasks: Impact on Accounting Majors in Upper-Level Courses. Issues in Accounting Education, 28(4), 759–777. DOI: https://doi.org/10.2308/iace-50518

Stoel, D., Havelka, D., & Merhout, J. (2012). An analysis of attributes that impact information technology audit quality: A study of IT and financial audit practitioners. International Journal of Accounting Information Systems, 13(1), 60-79. DOI: https://doi.org/10.1016/j.accinf.2011.11.001

Tekbas, I., & Nonwoven, K. (2018). The Profession of the Digital Age: Accounting Engineering. Obtenido de http://www.ifac.org/

Tiberius, V., & Hirth, S. (2019). Impacts of digitization on auditing: A Delphi study for Germany. Journal of International Accounting, Auditing and Taxation, 37, 1-14. DOI: https://doi.org/10.1016/j.intaccaudtax.2019.100288

Timea Fulop, M., Tiron-Tudor, A., & Cordos, G. (2019). Audit education role in decreasing the expectation gap. Original and Applied Research, 94(5), 306-313. DOI: https://doi.org/10.1080/08832323.2018.1527752

Tukey, J. (1977). Exploratory Data Analysis (Addison-Wesley Series in Behavioral Science). London: Pearson.

Vaidyanathan, N. (2017). Divided we fall, distributed we stand. Retrieved from ACCA:. Obtenido de https://www.accaglobal.com/content/dam/ACCA_Global/Technical/Future/Divided%20we%20fall%2C%20distributed%20we%20stand%20%20The%20professional%20accountant’s%20guide%20to%20distributed%20ledgers%20and%20blockchain.pdf.

Vasarhelyi, M., Teeter, R., & Krahel, J. (2010). Audit Education and the Real-Time Economy. Issues in Accounting Education, 25(3), 405-423. DOI: https://doi.org/10.2308/iace.2010.25.3.405

Werts, C., Linn, R., & Jöreskog, K. (1974). Interclass reliability estimates: Testing structural assumptions. Educational and Psychological Measurement, 34, 25-33. DOI: https://doi.org/10.1177/001316447403400104

Wessels, P. (2008). The identification and discussion of strategies for implementing an IT skills framework in the education of professional accountants. Journal South African Journal of Accounting Research, 22(1), 147-181. DOI: https://doi.org/10.1080/10291954.2008.11435135

Yoon, K., Hoogduin, L., & Zhang, L. (2015). Big data as complementary audit evidence. Accounting Horizons, 29(2), 431-438. DOI: https://doi.org/10.2308/acch-51076

Yordanov, V. (2018). Introduction to Natural Language Processing for Text: Retrieved from Towards Data Science . Obtenido de https://towardsdatascience.com/introductionto-natural-language-processing-for-text-df845750fb63

Descargas

Publicado

18-12-2021

Cómo citar

Maria Scheliga, M. . (2021). Digitalización en la auditoría externa-desafíos para la educación y la formación profesional en México. Vinculatégica EFAN, 7(1), 419–440. https://doi.org/10.29105/vtga7.2-16