Analysis of perception regarding the implementation of AI in housing in the Monterrey metropolitan area

Authors

DOI:

https://doi.org/10.29105/vtga11.1-1009

Keywords:

perception, ai, housing

Abstract

Artificial intelligence (AI) in housing has the potential to increase the quality of people lives, improve home security with the automation of routines in the home, because being of great impact we want to know the perception of the inhabitants of the metropolitan area of Monterrey on how this affects the daily life at homes, if it is of relevance  or adds value in their homes. The Likert method was used for the survey applied in the AMM, the sampling uses cross-sectional data that was used for the KMO that yields a data of 0.858, as the result is high, it allows to perform the principal components of factor analysis (PCA) with Varimax rotation and Kaiser normalization. In addition, a high Cronbach's alpha coefficient of 0.885 was found, indicating good internal consistency among the survey questions. Notable findings include concerns related to the privacy and security of data collected by home AI systems. These results suggest the need to carefully consider privacy and security issues when designing and implementing AI-based technologies in residential settings.

Downloads

Download data is not yet available.

References

Alvarado et al. (2016). Percepción de la calidad educativa: caso aplicado a estudiantes de la Universidad Autónoma de Nuevo León y del Instituto Tecnológico de Estudios Superiores de Monterrey. Revista de la Educación Superior, 45(180), 55-74. Obtenido de https://doi.org/10.1016/j.resu.2016.06.006 DOI: https://doi.org/10.1016/j.resu.2016.06.006

Bisquerra y Pérez-Escoda. (2015). Les escales de Likert poden augmentar en sensibilitat? REIRE Revista d’Innovació I Recerca En Educació, 129-147. Obtenido de https://doi.org/10.1344/reire2015.8.2828 DOI: https://doi.org/10.1344/reire2015.8.2828

Canto et al. (2020). Escala de Likert: Una alternativa para elaborar e interpretar un instrumento de percepción social. Revista de la Alta Tecnología y Sociedad, 38-45.

Carrasco y Jover. (Febrero de 2004). Métodos estadísticos para evaluar la concordancia. Medicina Clínica, 122, 28-34. DOI: https://doi.org/10.1157/13057543

Castañeda y Palacios. (2014). Nanotecnología: fuente de nuevos paradigmas. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 7(12), 49-65. DOI: https://doi.org/10.22201/ceiich.24485691e.2014.12.49710

Cronbach, L. J. (Septiembre de 1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297-334. Obtenido de https://doi.org/10.1007/BF02310555 DOI: https://doi.org/10.1007/BF02310555

Hair et al. (2010). Multivariate Data Analysis. Pearson Prentice Hall.

Hernández-Sampieri et al. (2018). Metodología de la investigación. Las rutas cuantitativas, cualitativa y mixta. Ciudad de México: Mc Graw Hill Education. DOI: https://doi.org/10.17993/CcyLl.2018.15

Kahn, J. H. (Septiembre de 2006). Factor Analysis in Counseling Psychology Research, Training, and Practice: Principles, Advances, and Applications. The Counseling Psychologist, 34(5), 684-718. Obtenido de https://doi.org/10.1177/0011000006286347 DOI: https://doi.org/10.1177/0011000006286347

Koçak y Terzi. (27 de 12 de 2022). Residential satisfaction and quality of urban life: examining diverse housing environments. Archnet-IJAR, 18(1), 58-80. Obtenido de https://www.emerald.com/insight/content/doi/10.1108/ARCH-01-2022-0014/full/html DOI: https://doi.org/10.1108/ARCH-01-2022-0014

Korneeva et al. (2021). Consumer Attitudes to the Smart Home Technologies and the Internet of Things (IoT). Energies, 14(23). Obtenido de https://doi.org/10.3390/en14237913 DOI: https://doi.org/10.3390/en14237913

Likert, R. (1932). A technique for the measurement of attitudes. (R. S. Woodworth, Ed.) Archives of Psychology, 22(40), 5-55.

Marin M, G. (2022). Integración de la inteligencia artificial en la arquitectura en américa latina: Desafíos y oportunidades. Revista De Arquitectura Y Urbanismo Taypi, 1(2), 10-11.

Nascimiento et al. (2022). Association between the benefits and barriers perceived by the users in smart home services implementation. Contemporary Management Research. Obtenido de https://doi.org/10.1108/K-02-2022-0232 DOI: https://doi.org/10.1108/K-02-2022-0232

Nascimiento et al. (2022). The acceptance process of smart homes by users: a statistical meta-analysis. Behaviour & information tecnology. Obtenido de https://doi.org/10.1080/0144929X.2022.2146534 DOI: https://doi.org/10.1080/0144929X.2022.2146534

Osuna et al. (2013). Valuación de la calidad urbano-ambiental. Una modelación hedónica: San Nicolás de los Garza, México. Estudios Demográficos y Urbanos, 28(2), 383-428. DOI: https://doi.org/10.24201/edu.v28i2.1433

Pieffet, G. (2020). Inteligencia artificial: pasado, presente y futuro. Revista SayWa, 2(3), 8-13.

Revollo, D. (2009). Calidad de la vivienda a partit de la metodologíá de precios hedonicos para la ciudad de Bogotá-Colombia. Revista Digital Universitaria, 10(7).

Rosa y de Castro. (2023). The Acceptance of Smart Home Technologies: A Literature Review of Benefits and Barriers Perceived b. Contemporary Management Research, 19(2), 107-129. DOI: https://doi.org/10.7903/cmr.22539

Rosen, S. (1974). Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. Journal of Political Economy, 82(1), 34-55. Obtenido de DOI: https://doi.org/10.1086/260169

Spearman, C. (1904). “General Intelligence,” Objectively Determined and Measured. The American Journal of Psychology, 15(2), 201-292. Obtenido de https://doi.org/10.2307/1412107 DOI: https://doi.org/10.2307/1412107

Watanabe y Kolmogorov. (2024). IoT-based Smart Home Automation Systems: Enhancing Comfort and Energy Efficiency. (S. C. Isarp, Ed.)

Zimmermann et al. (2019). Assessing Users’ Privacy and Security Concerns of Smart Home Technologies. De Gruyter Oldenbourg, 18(3), 197-216. Obtenido de https://doi.org/10.1515/icom-2019-0015s DOI: https://doi.org/10.1515/icom-2019-0015

Published

2025-01-31

How to Cite

Castro-Elicerio, M.-C., Sánchez-Romo , I. F., & Benavides-Lozano, A. M. (2025). Analysis of perception regarding the implementation of AI in housing in the Monterrey metropolitan area. Vinculategica Efan, 11(1), 77–89. https://doi.org/10.29105/vtga11.1-1009