Development of a measurement instrument for Acceptance of an artificial intelligence platform
DOI:
https://doi.org/10.29105/vtga11.3-1141Keywords:
Artificial Intelligence, ChatGPT, AI Acceptance, Academic Development, Measurement InstrumentAbstract
Currently, Artificial Intelligence (AI) has been consolidated in the scientific, technological and educational fields. Tools such as ChatGPT help in the search for information and in the performance of various activities, having an interaction between humans and machines. The acceptance of this AI platform in the educational field, being a promising tool, encourages students to adopt it in their day-to-day lives, thus generating an impact on their academic development. Therefore, the present study aims to develop a measurement instrument for the acceptance of an artificial intelligence platform. It is important to mention that an exhaustive and systematic search of the literature was carried out to identify both the factors that affect the acceptance of the technology and those items for its measurement. Likewise, the type of research in this study is exploratory and descriptive, since, through the review of literature in specialized databases, it was possible to identify and define the phenomenon under study. Thanks to the results obtained, it was possible to develop a measurement instrument, as well as a causal model with which the level of acceptance of the application of AI can be measured.
Downloads
References
Abdaljaleel, M., Barakat, M., Alsanafi, M., Salim, N. A., Abazid, H., Malaeb, D. & Sallam, M. (2024). A multinational study on the factors influencing university students’ attitudes and usage of ChatGPT. Scientific Reports, 14(1), 1983. DOI: https://doi.org/10.1038/s41598-024-52549-8
Ajzen, I. (2020). The theory of planned behavior: Frequently asked questions. Human behavior and emerging technologies, 2(4), 314-324. DOI: https://doi.org/10.1002/hbe2.195
Ajzen, I., Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs, Nueva Jersey, Prentice-Hall.
Bedregal-Alpaca, N., Cornejo-Aparicio, V., Tupacyupanqui-Jaén, D., & Flores-Silva, S. (2019). Evaluación de la percepción estudiantil en relación al uso de la plataforma Moodle desde la perspectiva del TAM. Ingeniare. Revista chilena de ingeniería, 27(4), 707-718. DOI: https://doi.org/10.4067/S0718-33052019000400707
Chaudhry, M. A., & Kazim, E. (2022). Artificial Intelligence in Education (AIEd): A high-level academic and industry note 2021. AI and Ethics, 2(1), 157-165. DOI: https://doi.org/10.1007/s43681-021-00074-z
Cheema, U., Rizwan, M., Jalal, R., Durrani, F., & Sohail, N. (2013). The trend of online shopping in 21st century: Impact of enjoyment in TAM Model. Asian journal of empirical research, 3(2), 131-141.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly 13(3):319-340. DOI: https://doi.org/10.2307/249008
Davis, F. D., Bagozzi, R. P., Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science 35(8):982-1003. DOI: https://doi.org/10.1287/mnsc.35.8.982
García-Peñalvo, F. J. (2023). La percepción de la Inteligencia Artificial en contextos educativos tras el lanzamiento de ChatGPT: disrupción o pánico. Education in the Knowledge Society (EKS), 24, e31279-e31279. DOI: https://doi.org/10.14201/eks.31279
Giansanti, D. (2023). Precision Medicine 2.0: How digital health and AI are changing the game. Journal of Personalized Medicine, 13(7), 1057. DOI: https://doi.org/10.3390/jpm13071057
Haleem, A., Javaid, M. y Singh, R. P. (2022). An era of ChatGPT as a significant futuris¬tic support tool: a study on features, abilities, and challenges. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2(4), 1-8. DOI: https://doi.org/10.1016/j.tbench.2023.100089
Hasanein, A. M., & Sobaih, A. E. E. (2023). Drivers and Consequences of ChatGPT Use in Higher Education: Key Stakeholder Perspectives. European Journal of Investigation in Health, Psychology and Education, 13(11), 2599-2614. DOI: https://doi.org/10.3390/ejihpe13110181
Hulleman, C. S., & Harackiewicz, J. M. (2009). Promoting interest and performance in high school science classes. science, 326(5958), 1410-1412. DOI: https://doi.org/10.1126/science.1177067
Ibrahim, H., Liu, F., Asim, R., Battu, B., Benabderrahmane, S., Alhafni, B. & Zaki, Y. (2023). Perception, performance, and detectability of conversational artificial intelligence across 32 university courses. Scientific Reports, 13(1), 12187. DOI: https://doi.org/10.1038/s41598-023-43998-8
Kamalov, F., Santandreu Calonge, D., & Gurrib, I. (2023). New era of artificial intelligence in education: Towards a sustainable multifaceted revolution. Sustainability, 15(16), 12451. DOI: https://doi.org/10.3390/su151612451
Khechine, H., Raymond, B. y Augier, M. (2020). La adopción de un sistema de aprendizaje social: valor intrínseco en el modelo UTAUT. Revista británica de tecnología educativa, 51 (6), 2306–2325. DOI: https://doi.org/10.1111/bjet.12905 DOI: https://doi.org/10.1111/bjet.12905
Kim, S. G. (2023). Using ChatGPT for language editing in scientific articles. Maxillofacial plastic and reconstructive surgery, 45(1), 13. DOI: https://doi.org/10.1186/s40902-023-00381-x
Korteling, J. H., van de Boer-Visschedijk, G. C., Blankendaal, R. A., Boonekamp, R. C., & Eikelboom, A. R. (2021). Human-versus artificial intelligence. Frontiers in artificial intelligence, 4, 622364. DOI: https://doi.org/10.3389/frai.2021.622364
Lanlan, Z., Ahmi, A., & Popoola, O. M. J. (2019). Perceived ease of use, perceived usefulness and the usage of computerized accounting systems: A performance of micro and small enterprises (mses) in china. International Journal of Recent Technology and Engineering, 8(2), 324-331. DOI: https://doi.org/10.35940/ijrte.B1056.0782S219
Montenegro-Rueda, M., Fernández-Cerero, J., Fernández-Batanero, J. M., & López-Meneses, E. (2023). Impact of the implementation of ChatGPT in education: A systematic review. Computers, 12(8), 153. DOI: https://doi.org/10.3390/computers12080153
Nazir, A., & Wang, Z. (2023). A comprehensive survey of ChatGPT: advancements, applications, prospects, and challenges. Meta-radiology, 1(2), 100022. DOI: https://doi.org/10.1016/j.metrad.2023.100022
oJultNCHuAM&t=22s34nbq60
Ongena, G., van de Wijngaert, L., & Huizer, E. (2013). Acceptance of online audio-visual cultural heritage archive services: a study of the general public.
Ramírez-Correa, P. (2014). Uso de internet móvil en Chile: explorando los antecedentes de su aceptación a nivel individual. Ingeniare. Revista chilena de ingeniería, 22(4), 560-566. DOI: https://doi.org/10.4067/S0718-33052014000400011
Ray, P. P. (2023). ChatGPT: a comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3, 121-154. DOI: https://doi.org/10.1016/j.iotcps.2023.04.003
Rubaceti, B., & Alida, N. (2021). La influencia social en el proceso de inclusión y bancarización fintech de usuarios emprendedores en Colombia a través del modelo de aceptación de tecnología Tam (Doctoral dissertation, Universidad Francisco de Paula Santander).
Sampieri, H., & Collado, R. F. (2010). C. y Baptista Lucio, P.(2010). Metodología de la investigación, 6.
Solano, A. V. C., Arboleda, L. D. C., García, C. C. C., & Dominguez, C. D. C. (2023). Benefits of artificial intelligence in companies. AG Managment, 1, 17-17. DOI: https://doi.org/10.62486/agma202317
Suárez-Escalona, R., Estrada-Domínguez, J. E., Infante-Alcántara, L. & Cavazos-Salazar, R. L. (2023). Análisis de la aceptación de una plataforma de enseñanza aprendizaje en la universidad. Formación universitaria, 16(1), 23-32. DOI: https://doi.org/10.4067/S0718-50062023000100023
Tong, Y. y Zhang, L. (2023). Descubriendo las tendencias de investigación en biología sintética de la próxima década. Biotecnología sintética y de sistemas, 8(2), 220–223.
UNESCO. (2019). Informe de los Objetivos de Desarrollo Sostenible. Recuperado de https://bit.ly/
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204. DOI: https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., Morris, M., Davis, G., y Davis, F. (2003). User Acceptance of Information Technology: Towards a Unified View. MIS Quarterly, 27(3), 479–501. DOI: https://doi.org/10.2307/30036540
Wicaksono, A. R., Maulina, E., Rizal, M., & Purnomo, M. (2023). Technology Accepted Model (TAM): Applications in Accounting Systems. Journal of Law and Sustainable Development, 11(5), e547-e547. DOI: https://doi.org/10.55908/sdgs.v11i5.547
Zhang, P., & Tur, G. (2024). A systematic review of ChatGPT use in K‐12 education. European Journal of Education, 59(2), e12599. DOI: https://doi.org/10.1111/ejed.12599
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Diana Karina Rodriguez Amaya, Jesus Eduardo Estrada Domínguez

This work is licensed under a Creative Commons Attribution 4.0 International License.
a). Authors keep copyright and give the journal the right of the first publication of the work under a Creative Commons attribution license. This license allows others to share the work as long as original authorship and initial publication in this journal is acknowledged.
b). Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (e.g., include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work was published for the first time in this journal.