Agricultura inteligente en México: Analítica de datos como herramienta de competitividad
DOI:
https://doi.org/10.29105/vtga6.2-619Keywords:
analítica de datos, agricultura inteligente, agricultura de precisión, inteligencia de negocios.Abstract
The competitiveness of the global agri-food system needs to be ensured by the building of physical and cybernetic infrastructure that allows smart agriculture: self-managed and sustainable, taking advantage of new information and communication technologies. This paper presents the importance of big data and technology in agriculture and examined state-of-the-art and distinction between smart farming and precision agriculture. The study concludes with the importance of the application of agricultural open data using business intelligence and data analytics of the horticultural crops production in Mexico, during the period 2018-2019, such as avocado, tomato, and berries production, showing the high performance due to the adoption of intelligent agriculture.
Downloads
References
Agroexcelencia (2019). Las berries en Culiacán, una oportunidad de negocios. Agroexcelencia. Recuperado de: https://agroexcelencia.com/las-berries-en-culiacan-una-oportunidad-denegocios/
Becker, L. T., & Gould, E. M. (2019). Microsoft Power BI: Extending Excel to Manipulate, Analyze, and Visualize Diverse Data. Serials Review, 45(3), 184–188. https://doi.org/10.1080/00987913.2019.1644891 DOI: https://doi.org/10.1080/00987913.2019.1644891
Blueberries Consulting (2020). Mexico: They manage to produce blueberries in pots in the región. Blueberries consulting magazine. Recuperado de: https://blueberriesconsulting.com/en/mexico-logran-producir-arandanos-en-macetas-en-laregion/
Blueberries consulting (2020). Baja California: Las berries bajacalifornianas alimentan a Estados Unidos. Blueberries consulting magazine. Recuperado de: https://blueberriesconsulting.com/baja-california-las-berries-bajacalifornianas-alimentan-aestados-unidos/
Bolisani, E. y Bratianu, C. (2018). Emergent Knowledge Strategies. Strategic Thinking in Knowledge Management. Switzerland: Springer. DOI: https://doi.org/10.1007/978-3-319-60657-6
Bronson, K y Knezevic, I. (2016). Big Data in food and agriculture. Big data &Society. 1-5 DOI: https://doi.org/10.1177/2053951716648174
CIAT Y IFPRI (2016). CGIAR Big data coordination platform. Proposal to the CGIAR Fund Council, 31 March, 2016. International Center for Tropical Agriculture. International Food Policy Research Institute, Washington DC, United States of America.
Elceo (2019). La agricultura inteligente puede llegar en dos años a México. Recuperado de https://elceo.com/tecnologia/la-agricultura-inteligente-puede-llegar-en-dos-anos-a-mexico/
Expansión (2019). Esta empresa ya encontró el nuevo oro del campo mexicano y así lo hará brillar. Expansión. Recuperado de: https://expansion.mx/empresas/2019/06/28/esta-empresa-yaencontro-el-nuevo-oro-del-campo-mexicano-y-asi-lo-hara-brillar
FAO (2020). La agricultura climáticamente inteligente. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Recuperado de: http://www.fao.org/climate-smartagriculture/knowledge/es/
FAO (2020). TECA – Tecnologías y prácticas para pequeños productores agrícolas. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Recuperado de: http://www.fao.org/teca/categories/es/
FAOSTAT (2019). Datos sobre alimentación y agricultura. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Recuperado de: http://www.fao.org/faostat/es/#home
Forbes (2017). Solo 6% de las pymes aprovechan las tecnologías de la información. Forbes México. Recuperado de: https://www.forbes.com.mx/solo-6-pymes-aprovecha-las-tecnologias-lainformacion/
Fritz, S. et al. (2019). A comparison of global agricultural monitoring systems and current gaps. Agricultural Systems, 168. 258-272. DOI: https://doi.org/10.1016/j.agsy.2018.05.010
Gilpin, L. (2014). How Big Data Is Going to Help Feed Nine Billion People by 2050. TechRepublic. 1-12. Gobierno Abierto MX (2019). ¿Qué es? Alianza para el gobierno abierto de México. Recuperado de: http://dgti-transparencia-gobierno-abierto-staging.k8s.funcionpublica.gob.mx/quienessomos/
Gobierno MX (2016). ¿Qué son los datos abiertos? Gobierno de México. Recuperado de: https://datos.gob.mx/blog/que-son-los-datos-abiertos?category=casos-de-uso
Gómez Santamaria, C. et al. (2017). Mejorar la productividad del aguacate hass mediante un prototipo de agricultura de precisión que permita el uso eficiente del recurso hídrico. Encuentro Internacional de Educación en Ingeniería. Universidad Pontificia Bolivariana. Colombia.
Gopal y Chintala (2020). Big data challenges and opportunities in agriculture. International Journal of Agricultural and Enviromental Information Systems, 1. 48-66. DOI: https://doi.org/10.4018/IJAEIS.2020010103
Gottdenker, J. Giacomelli, G. A. y Durner, E. (2001) Supplemental lighting strategy for greenhouse strawberry production. Departmen of bioresource engineering, Cook College Rutgers University. DOI: https://doi.org/10.17660/ActaHortic.2001.559.45
Hoste, R, Suh, H y Kortstee, H. (2017). Smart farming in pig production and greenhouse horticulture. An inventory in the Netherlands. Wageningen University & Research: Netherlands. https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/ DOI: https://doi.org/10.18174/425037
ISPA (2019). Precision agriculture. International Journal on Advances in Precision Agriculture. Springer.
Jørgensen, B. N., Ottosen, C-O., Dam-Hansen, C., Rosenqvist, E., Pedersen, I. K., Sørensen, J. C., & Kjær, K. H. (2016). Dynalight Next Generation: Smart Grid Ready Energy Efficient Lighting System for Green House Horticulture. DTU: Denmark
Miller, H.G., Mork, P., 2013. From data to decisions: a value chain for Big Data. IT Professional 15, 57–59. DOI: https://doi.org/10.1109/MITP.2013.11
National Science Foundation (2012) Core Techniques and Technologies for Advancing Big Data Science & Engineering. National Science Foundation USA. Recuperado de: https://www.nsf.gov/pubs/2012/nsf12499/nsf12499.pdf
NU (2015). Objetivos de Desarrollo Sostenible. Naciones Unidad. Recuperado de: https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/
Qlik (2020). Acelere la creación de valor empresarial mediante los datos. Qlik. Recuperado de: https://www.qlik.com/es-es
Paparozzi, E. (2013). The Challenges of Growing Strawberries in the Greenhouse. Agronomy and Horticulture, 23 (6). 789-802 DOI: https://doi.org/10.21273/HORTTECH.23.6.800
Power BI (2020). Convierta los datos en oportunidades. Power BI Microsoft. Recuperado de: https://powerbi.microsoft.com/es-es/
Rao, N. H. (2018) Big Data and Climate Smart Agriculture - Status and Implications for Agricultural Research and Innovation in India. Proceedings of the Indian National Science Academy. University of Hyderabad, 1-22. DOI: https://doi.org/10.16943/ptinsa/2018/49342
SAGARPA (2017). Planeación Agrícola Nacional 2017-2030. Jitomate mexicano. Secretaria de Agricultura, Ganaderia y Desarrollo Rural, Pesca y Alimentación de México. Recuperado de: https://www.gob.mx/cms/uploads/attachment/file/257077/Potencial-Jitomate.pdf
Saiz-Rubio y Rovira, (2020). From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management F. Agronomy 2020. https://doi.org/10.3390/agronomy10020207 DOI: https://doi.org/10.3390/agronomy10020207
Sciforce (2019). Smart Farming: The Future of Agriculture. Sciforce.Recuperado de: https://www.iotforall.com/smart-farming-future-of-agriculture/
Servicio de Información Agroalimentaria y Pesquera (2019). Avance de siembras y cosechas. Resumen nacional por cultivo. SIAP. Recuperado de: http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/AvanceNacionalSinPrograma.do
Signals IOT (2019). Agricultura lidera proyectos en Centro de innovación IOT en México. https://signalsiot.com/agricultura-lidera-proyectos-en-centro-de-innovacion-iot-de-mexico/
Smart-Akis (2016). What is smart-farming? Smart Farming Thematic Network. Recuperado de: https://www.smart-akis.com/index.php/network/what-is-smart-farming/
Sonka, S. (2015). Big data: from hype to agricultural tool. Farm Policy Journal, 12. 1-9 Tableau (2020). Cambia tu manera de pensar en los datos. Tableau. Recuperado: https://www.tableau.com/es-mx
Town, P., & Thabtah, F. (2019). Data analytics tools: A user perspective. Journal of Information & Knowledge Management, 18(1), 1-16, DOI:10.1142/S0219649219500023 DOI: https://doi.org/10.1142/S0219649219500023
Tyrychtr, J. Ulman, M. y Vostrovsky, V. (2015) Evaluation of the state of the Business Intelligence among small Czech farms. Agricultural Economics. 61(2), 63-71. DOI: https://doi.org/10.17221/108/2014-AGRICECON
Wolfert, S., Ge, L. Verdouw, C. y Boodardt, M.C. (2017) Big Data in Smart Farming – A review, Agricultural Systems, 153, 69-80 DOI: https://doi.org/10.1016/j.agsy.2017.01.023
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Alejandra Rosales-Soto, Ricardo Arechavala-Vargas
This work is licensed under a Creative Commons Attribution 4.0 International License.
a). Authors keep copyright and give the journal the right of the first publication of the work under a Creative Commons attribution license. This license allows others to share the work as long as original authorship and initial publication in this journal is acknowledged.
b). Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (e.g., include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work was published for the first time in this journal.